Square of Hamilton cycle in a random graph

نویسندگان

  • Andrzej Dudek
  • Alan Frieze
چکیده

We show that p = √ e n is a sharp threshold for the random graph Gn,p to contain the square of a Hamilton cycle. This improves the previous results of Kühn and Osthus and also Nenadov and Škorić.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square of a Hamilton cycle in a random graph

We show that the threshold for the random graph Gn,p to contain the square of a Hamilton cycle is p = 1 √ n . This improves the previous results of Kühn and Osthus and also Nenadov and Škorić.

متن کامل

Adding random edges to create the square of a Hamilton cycle

We consider how many random edges need to be added to a graph of order n with minimum degree αn in order that it contains the square of a Hamilton cycle w.h.p..

متن کامل

Robustness of Pósa’s conjecture Master Thesis

The kth power of a cycle is obtained by adding an edge between all pairs of vertices whose distance on the cycle is at most k. In 1962, Pósa conjectured that a graph G on n vertices contains a square of a Hamilton cycle if it has minimum degree δ(G) ≥ 3 n, and, 11 years later, Seymour claimed that δ(G) ≥ k k+1 n is sufficient for the appearance of a kth power of a Hamilton cycle for any k ≥ 2. ...

متن کامل

On Pósa's Conjecture for Random Graphs

The famous Pósa conjecture states that every graph of minimum degree at least 2n/3 contains the square of a Hamilton cycle. This has been proved for large n by Komlós, Sarközy and Szemerédi. Here we prove that if p ≥ n−1/2+ε, then asymptotically almost surely, the binomial random graph Gn,p contains the square of a Hamilton cycle. This provides an ‘approximate threshold’ for the property in the...

متن کامل

Deciding Graph non-Hamiltonicity via a Closure Algorithm

We present a matching and LP based heuristic algorithm that decides graph non-Hamiltonicity. Each of the n! Hamilton cycles in a complete directed graph on n + 1 vertices corresponds with each of the n! n-permutation matrices P, such that pu,i = 1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n + 1. A graph instance (G) is initially coded as exclusion set ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016